If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+36x+83=0
a = 2; b = 36; c = +83;
Δ = b2-4ac
Δ = 362-4·2·83
Δ = 632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{632}=\sqrt{4*158}=\sqrt{4}*\sqrt{158}=2\sqrt{158}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-2\sqrt{158}}{2*2}=\frac{-36-2\sqrt{158}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+2\sqrt{158}}{2*2}=\frac{-36+2\sqrt{158}}{4} $
| 9x2-12+3x=0 | | -130=-5(2n-5) | | x-(.35*x)=48.75 | | 9+3*a=-6 | | 3(x+2)+3x+1=12 | | -5x+7=72 | | 3000=3000+5000x+3000x | | 9-6*a=-15 | | (8-u)(3u+5)=0 | | 10^3-x=2^x.128 | | 7x-15=332 | | 7+a/2=10 | | 21.20=4x+3.96 | | 4x-4,x=-3 | | 4x-16+68=180 | | 1/7x+3/7x+15=21 | | 4x-16+16=180 | | 9(a+2)=27 | | X^2-12x-19=-6 | | 21.20=4g+3.96 | | 60=10-40x-30 | | 7+a=5/2 | | -3(1+2x)-5=6x-2 | | 2+4*a=-10 | | 8x+11+14x-7=90 | | 45=m/2+5 | | (-7)-x=-15 | | 3(2n+5)=9(5n+2)+7 | | 16=16+4.5x+5x | | 10*3-x=2*x.128 | | 35=2b+56 | | 3x2-14=19x |